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PSEUDOSPECTRAL SOLUTION OF ONE DIMENSIONAL AND TWO DIMENSIONAL
INVISCID FLOWS WITH SHOCK WAVES

I. INTMDIETION

Pseudospectral techniques have been used to solve the one dimensional

propagating shock wave problem. Taylor et al (Reference 1) and Gottlieb et

al (Reference 2) have done so using the Euler equations of motion. Taylor

utilized the FCT (Flux Corrected Transport) algorithm of Boris and Book

(Reference 3) to damp out unwanted numerical oscillations. This procedure

yielded broadening of the shock wave. They treated a Mach 1.4 shock wave

propagating into a free stream at rest. The flow behind the shodc wave was

subsonic. Gottlieb et al treated the shock tube problem for shock wave Mlch

numbers of 2.1 and 29.3. The free stream was subsonic with the flcw behind

the shock wave being supersonic for both mach number cases. They performed

a detailed analysis of the effects of different filtering techniques on

reducing unwanted numerical oscillations. They considered the Shuman filter

given by:

U n n n~1 I3+ (1)pn U
tn n h

U is the filtered conservative variable at the jth spatial location and the

n t h time step. For a two dimensional problem one would need to filter in

each direction separately. The ed, coefficients are given by

bknuscript submitted July 6, 1982.
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and B is a constant greater than zero and less than one. Beta was chosen to

be 0.01. The above was used in one of two versions,

constant 8j, 1/2coefficients and variable ejl, coefficients. The former is

qualitatively equivalent to a first order artificial viscosity scheme. Both

were applied to the physical variables directly. They also utilized a low

pass spectral filter, which they developed, to damp out the oscillations

which arose from the highest frequency spectral conponents. The form of

their spectral filter is:

k-k
-a k (3)

max o
e

where k is the spectral wavenumber, kmax is the maximum wavenumber

corresponding to the total number of collocation points and k° - N where N

is the total number of collocation points used to represent the flow. The

spec.ral filter was applied first, followed by the Shuman filter. They

determined rules for applying the low pass spectral filter. They found that

applying it over the highest sixth of the frequency values gave good

results. The Shuman filtering employed was one sided. That is, the shock

position was determined first and then the filter was applied over the

region behind the shock wave and separately to the region in front of the

shok wave. Using this approach they were able to obtain a sharp shodck with

the correct propagation velocity. Both approaches, however, have some

drawbacks. The former did not yield a sharp discontinuity while the latter
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required an examination of the spectral coefficients at each time step to

determine the shock wave location in order to avoid applying the physical

space filter across the shock front. When more general classes of inviscid

flows are treated (ones with complex, multiple shock geometries) the

smearing in the first approach may prove unacceptable. The one-sided

smoothing of the latter will become cumbersome to employ.

A brief outline of pseudospectral techniques will be given in

Section 2. The third section of this report will present results for the

one dimensional propagating shock wave problem using a different cal.

space smoothing function than either of t ye while retaining the

lowpass spectral filtering t que of Reference 2. AMn artificial

viscosity scheme is used uniformly throughout the entire flow field,

including across the shock fiont, to resolve the shock wave as a sharp

discontinuity and at the same time maintain the correct shock propagation

velocity.

To further demonstrate the utility of this approach to the solution of

flows by pseudospectral methods, solutions to two-dimensional inviscid

supersonic wedge flows will also be presented in Section 4 of this report.

To the present author's knowledge, this is the first time pseudospectral

solution techniques have been used tc successfully treat two-dimensional

inviscid flows.

2. PSDZOWU CTL METHODS

A brief description of pseudospectral techniques will be presented here

for completeness. For those readers interested in a detailed exposition on

pseudospectral techniques, Reference 4 is strongly recommended.
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Pseudospectral techniques involve the use of series of functions to

solve differential equations. For all work reported herein, Qiebyshev

polynomials are used. Chebjshev polynomials are represented by Tn(x) and

are given by:

Tn(x) - cos [n cos-(x)]

- cos [n e I (4a)

where e = cos - , (x)

The Chebyshev polynomials have the folliving property:

T' n+ (x) T' n-(x)
n n+1 n-i

Tn(X/ n-i- n-i (4b)

Chebyshev polynomials may be used to represent a function F(x) in the

follcwing manner

N
F(x) - Z A T (x) (5)

nn
n-o

A function F (x,t) may be represented as:

N
F (x,t) - Z A (t) T nx) (6)

nso

where the time dependence is totally contained in the series coefficients

A,(t) , and the x dependence in the Chebyshev functions Tn(x).
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Let us now consider the application of such techniques for the solution

of the one-dimensional unsteady Euler equation in conservation law form:

r 0 (7a)

L +P (7b)
[(e+p)u j

and

e = --- +.2 U2 (7c)
ry-) 2

The pseudospectral solution, using Chebyshev collocation, of this equation

involves using Chebyshev series to obtain the spatial derivative and finite

difference algorithms to obtain the time derivative. (A flowchart of the

solution procedure is shown in Figure 1). Collocation involves the

specification of the initial flow variables and the conputation of the time

dependent solution for the flow variables at distinct pre-determined spatial

positions or points. These positions are the collocation points. The

spatial derivative is obtained as follows. At to the values of I(x) at the

collocation points xj are specified.

The collocation points are given by

xj. Cos -) 0 j CN (8)

where N is the total number of Chebyshev polynodals one chooses to use to

represent the function E*(x) . As can easily be seen, the xj points are not

evenly spaced, but are clustered about x - * 1.

We represent L(x) by
N

t(t,x) - Z A n(t)Tn (x) (9)
nmO

n... a n



The left hand side of this equation is known while the An's are at this

point unknown. The first step is therefore to solve for the An's for each

i(x) vector element. This could be done by a simple matrix inversion.

However, it is much faster to use FFT's (fast Fourier transforms). *

therefore use the FFT's to invert (9) to obtain the values of the Ar's. We

may then represent the spatial derivative Z/ 2K as a Chebyshev series given

by:

-a:= An ')Tn(x) (10)
nmo

Because of properties of Chebyshev polynomials (equation 4b) we may relate

the spectral coefficients of the spatial derivative, A(M) ,to the known
n

spectral coefficients of E, namely An, by the following recurrence relation.

2 N( 1) . .1 NIt
"~~ p- +1 a

p+n-odd

Since the An's are known at the current time step to (not necessarily zero)
from F4uation 9, the AM1 )'s are obtained from the recurrence relation,

n

Equation 1L The summation in Equation 10 is performed using the FFT.

Therefore it remains only to calculate the temporal derivative -- in (7).

For the results presented herein the Adams-Bashforth algorithm was used to

advance the solution to t + ± . (The modified Euler predictor corrector0

scheme was also investigated. However, it did not yield better results and

took more computer time to implement.) This process is then cyclically

repeated to march the solution in time (physical or couputational). The
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Adams-Bashforth algorithn is given by:

at t -
It+It - u + A-t .- - - (12)

where superscripts denote the value of time at which each term is evaluated.

3. ONE DIMKNSIONA. PROPAGATING SHO(X WAVE RESULTS

Two types of artificial viscosity schemes were tried; a second order

scheme given by

D n, i m -u(Un, i+ - 2Un, i + Un,i_ 1  (13)

and a fourth order scheme given by

Vn,i - n,i+2 + Un,i-2 -4 [Un,i+1 + Un,i-1 (14)

+6 U }

where Dni is the magnitude of the dissipation for the nth conservative flow

variable at the ith spatial point. In both cases, U is the magnitude of the

artificial viscosity.

Three types of shock tube flcas were considered: (a) supersonic

inflow/outflow, (b) subsonic inflow/outflow and (c) supersonic

inflo/subsonic outflow. They represent the entire range of shock tube

problems and will be discussed below. The time step size used throughout

was one half the maximum based on stability considerations (effectively a

Courant number of 0.5). The resulting time step size values are

(a) .502x10 - 4 , (b) .99&10 - 4 and (c) .574x,07 4 .
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The conditions for the supersonic inflow/outflow case were a free

stream Mach number of 1.5 and a shock Mach number of 3.5 (with respect to

ground fixed coordinates). One hundred twenty eight Chebyshev polynomial

terms were used to represent the flow. All results uuilized the low pass

spectral filter. In all cases the initial shock position (t-to-0)

was at x - -1.0 (i.e. at the left hand side computational boundary).

The second order artificial viscosity scheme was used first for the

above problem. Typical results are shown in Figure 2 where the static

pressure discribution (non-dimensionalized by the free stream vs i pl) is

shown. P2 represents the post shock static pressure. The anal, t shock

wave position at t-.1505 is shown for comparison. Clearly the F i wave is

unacceptably smeared. For this reason the second order smoothit eme was

abandoned.

Results for this case with the fourth order smoothing are shown in

Figures 3 and 4. The figures show the calculated shock solution at times of

0.05 and 0.15 respectively. The analytic shock position at the respective

times is shown for comparison. As can be seen, the computed shock position

is in excellent agreement with the analytic solution. Further, the correct

pre and post shock pressures are maintained. One can see the effect of grid

resolution by comparing Figures 3 and 4. As previously mentioned in Section

2 points are clustered about x - * I with the coarsest grid spacing

occurring at x-0. The shock wave is in a region of high point resolution in

Figure 3 and nearly at the most coarse grid resolution in Figure 4. The

apparent skewness of the calculated shock front in Figure 4 is not due to

overly large dissipation. It is instead due to the coarse grid spacing.
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The shock cannot of course be resolved to within a single grid spacing. All

flow properties were held fixed at both the supersonic inflow and outflow

boundaries. At the supersonic outflow boundary it was necessary to apply

the second order artificial viscosity locally in order to remove

oscillations emanating from this boundary. Without this localized second

order smoothing, the solution went catastrophically unstable at the outflow

boundary.

The second shock tube problem considered involved supersonic inflow and

subsonic outflow (see Figures 5 and 6). The free stream Mach number was

0.845 with the shock Mach number 2.949 with respect to the ground. Again

the shock is maintained as a sharp discontinuity propagating at the correct

velocity. As before, the supersonic inflow boundary conditions are all flow

variables held fixed. However, at the subsonic outflow boundary one

physical flow variable was specified with the remaining ones computed from

the characteristic values of the flow (as in Reference 2).

The last shock tube problem considered had both subsonic infl-? and

subsonic outflow. The free stream mach nunber wa3 0.5 while the shock wave

Mach number was 1.8 with respect to the ground. Results for the pressure

distribution at two different times are shown In Figures 7 and 8. As in

previous cases, the shock position and shape are in excellent agreement with

the analytical values. The boundary conditions used were to hold all flow

variables fixed at the subsonic inflow boundary -nd (as in the previous

case) to hold one flow variable fixed at the subsonic outflow boundary while

computing the remaining ones from the characteristics.

9



4. TWO DDIKNSIOKAL SUPISONIC W DGE FLOW RESULTS

Two cases were considered, a ten degree half angle wedge at free stream

Mach numbers of 1.5 and 3.0. The computational grid was dimensioned

33 x 33. The resulting grid lines are plotted in Figure 9. Figure 10 shows

the allignment of the computational boundary in physical space. Now, since

x 1  x 4x 2

(15)

Y <Y ma-x

we must transform to (E, n ) space to obtain IeI 1, Iril I ,which is required

of the collocation points. This transformation is given by:

2x-(x I +x 2 )

(x 2 -x 1 )

(16)

2y-ymx

Ymax

No attempt was made to use the optimum time step size, given by Reference 5.

mx< 8.0 (17)
N Iu+clmax

In fact, for all caloulations presented herein, an effective Courant number

of 0.5 was used. (That is, the numerator of (17) was replaced by 4.0.) For

purposes of comparison, the wedge surface pressure and density distributions

as well as computer generated contour plots of the shock wave position and
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shape are used. Fourth order dissipation was used throughout in both the

x and y directions. Second order dissipation was used in the neighborhood

of x - x2 (in the x-direction only) to eliminate oscillations emanating from

the supersonic outflow boundary. T-R flow internal to the computational

boundaries was initialized to free stream values. Along region BCDE of the

computational boundary the flow was held fixed at free stream values. Along

region AB and FE it was held fixed at wedge flow properties. Finally at the

wedge surface, region AF, surface tangency was imposed after each time step.

Results for the Mach 1.5 case are shown in Figures 11 through 14. The

time step size was .125x10 - 2. Figures 11 and 12 show contour plots of the

pressure and density fields respectively. The analytic shock position is

also shown as a solid line for comparison. The shock position and

orientation are predicted exactly by the pseudospectral solution. The wide

band or thickness of the computed shock is due to the very coarse grid

resolution used in the 2D runs, namely 33x33. In terms of grid intervals

the shock shown in Figures 11 and 12 lies over only two to three grid

intervals. Increasing the grid resolution will redkce the thickness of the

contoured shock wave.

The increase in shock thickness which appears in Figures 11 and 12 in

the neighborhood of the right hand side computational boundary is due to the

localized second order artificial viscosity scheme used in that region

(supersonic outflow). With a 33 point resolution along the X-axis only

several points are needed to physically extend well into the interior of the

computational area. With a more realistic grid resolution, say 128 points,

the maximum extent would be rediced to only x = 0.99 and no effect would be

11



present in the shock plots. Surface pressure and density distributions are

shown in Figures 13 and 14. In both cases, agreement between the computed

result and the analytic result (represented by the dotted line) is

excellent. The minor overshoots and undershoots that appear in both plots

represent differences of less that 1.5% from the analytic values.

Similar plots are shown in Figures 15 through 18 for the Mich 3.0

case. The time step size is .785x10- 3 . Agreement is excellent both in the shock

shape and location and in the surface pressure and density distributions.

5. CONaMUSIONS

(1) Pseudospectral solution techniques can treat inviscid 1-D and 2-D

flows with shock waves quite accurately when a low pass spectral filter is

used in conjunction with a fourth order artificial viscosity scheme (applied

to the physical variables). All shocks are maintained as discontinuities

with only minor pre and post cursor oscillations.

(2) For the 2D flow problem considered here (as well as the ID

supersonic outflow problem), a localized second order artificial viscosity

scheme must be applied in the neighborhood of the supersonic outflow

boundary to damp out oscillations that arise at the boundary and keep the

solution stable. Without it, the solution always goes catastrophically

unstable at this boundary.

12



Flowfield specified @ time t

Calculate A 's by inverseFE
Calculate A M1's fromA 's

n n

using recurrence relation

4

Apply spectral filter to An

SCalculate spatial derivatives

using direct FFT on the A (13's t t + At

Advance flowfield solution to
time t + At using finite

difference representation of
temporal derivative

Fiished? 
No

Yes

Fig. 1 - Pseudospectral calculation flowchart
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MSHOCK = 3.5, M1 - 1.5, 2nd order dissipation scheme.
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MSHOCK - 3.5, M1 - 1.5, 4th order dissipation scheme.
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Fig. 4 -P/P 1 vs x at ITER -6000, t -0.3010 for supersonic inflow and outflow.
MSHOCK -3.5, M1 1.5, 4th order dissipation scheme.
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Fig. 5 - P/P1 vs x at ITER - 1000, t - 0.0570 for supersonic inflow and subsonic outflow.
MSHOCK - 2.94957, MI 0.84515, 4th order dissipation scheme.
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Fig. 6 - P/P1 vs x at ITER - 6000, t 0.3448 for supersonic inflow and subsonic outflow.
MSHOCK 2.94957, M1 0.84515, 4th order diauipation scheme.
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Fig. 7 - P/P vs x at ITER - 2000, t - 0.1998 for subsonic inflow and outflow.
MSHOCK - 1.80, M1 - 0.50, 4th order dissipation scheme.
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Fig. 8 - P/P1 vs x at ITER -8000, t - 0.7992 for subsonic inflow and outflow.
MSHOCK -1.80, M1 - 0.50, 4th order dissipation scheme.
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